The era of biological medicines

Since their first use in the 1980s, biological medicines (including biosimilar medicines) have grown to become an indispensable tool in modern medicine. Worldwide, millions of patients have already benefited from approved biological medicines, but what exactly are they, and how are they produced?^{1,2}

Biological medicines\(^1\) have revolutionized the treatment of many disabling and life-threatening diseases

- Biological medicines:
 - include a wide range of products such as vaccines, blood and blood components, allergenics, somatic cells, gene therapies, tissues, and recombinant therapeutic proteins
 - are highly specific and targeted medicines
 - help to treat or prevent many rare and severe diseases, including:

 - Cancers
 - Arthritis
 - Psoriasis
 - Inflammatory digestive disorders
 - Growth disorders
 - Diabetes
 - Nephrology

Biological medicines contain one or more active substances made by or derived from a biological source\(^1\)

- Since their first use in the 1980s, biological medicines have grown to become an indispensable tool in modern medicine\(^2\)

Biological medicines are an integral and indispensable part of modern medicine\(^6\)

Biological medicines are predominantly larger and more complex than chemically synthesized medicines.

<table>
<thead>
<tr>
<th>Type of molecule</th>
<th>Chemically synthesized medicine</th>
<th>Growth hormone</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of molecule</td>
<td>Small molecule</td>
<td>Protein (without sugars)</td>
<td>Glycoprotein (variable sugars)</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Chemical</td>
<td>Bacterial</td>
<td>Mammalian</td>
</tr>
<tr>
<td>Uniformity</td>
<td>Single substance</td>
<td>Single main substance</td>
<td>Mixture of variants</td>
</tr>
<tr>
<td>Size</td>
<td>21 atoms (aspirin)</td>
<td>3000 atoms (HGH)</td>
<td>>20,000 atoms (mAb)</td>
</tr>
</tbody>
</table>

The complexity of biological medicines is such that they cannot usually be synthesized by conventional methods.

Abbreviations: HGH, human growth hormone; mAb, monoclonal antibody.

Producing biological medicines tends to be more complex than producing chemically derived medicines1,2

The inherent variability of living organisms and the manufacturing process result in the biological medicine displaying a certain degree of variability (‘microheterogeneity’)1

A biological medicine is a mixture of closely related variants of the same protein

- The living organisms used to make biological medicines are naturally variable
- An inherent degree of minor variability (‘microheterogeneity’) is thus normally present in biological medicines
- Microheterogeneity is also present within and/or between batches of the same biological medicine
- The degree of variability must fall within a range agreed upon by the health authority to ensure consistent safety and efficacy
- **Strict controls** are always in place during manufacturing to ensure batch-to-batch consistency, and that the differences do not affect safety or efficacy

Summary: The era of biological medicines

Biological medicines contain one or more active substances made by or derived from a biological source\(^1\)

The complexity of biological medicines is such that they cannot usually be synthesized by conventional methods\(^2\)

The variability of the living organisms contributes to microheterogeneity\(^3\)

Microheterogeneity is normal, and seen within or between different batches of the same biological product\(^4\)

Strict controls during manufacturing ensures safe and effective biological medicines\(^4\)

Biological medicines have grown to become an indispensable tool in modern medicine\(^5\)

Biological medicines — the major social and economic challenges

The global spend on pharmaceuticals continues to increase. The use of biological medicines offers new treatment choices to patients, but at a high financial cost. What are the challenges faced by payers and physicians in preserving access to biological medicines within a financially constrained healthcare system?

1. 2015 WHO Global Report: Preventing chronic diseases: a vital investment
Chronic conditions are on the rise worldwide

2015 WHO global report

• 80% of chronic disease deaths today occur in low- and middle-income countries
• The threat is growing – the number of people, families and communities afflicted is increasing

With the global prevalence of age-related chronic diseases rising, access to cost-effective medical treatment will become increasingly important over the next decades worldwide

1. 2015 WHO Global Report: Preventing chronic diseases: a vital investment
Health systems must adapt to meet the growing demand for the treatment of chronic conditions

In the US, chronic conditions account for:

90% of all healthcare costs

and nearly 100% of Medicare spending

Access to cost-effective treatment is paramount for the short, medium, and long-term sustainability of healthcare systems

Footnotes: *Medicare is a US federal health insurance program for elderly patients.
The use of biological medicines continues to grow consistently each year

- In 2019, biologic spending was $211 billion – 43% of total medicine spending in the U.S.\(^1\)

- Biological medicines can cost up to 100,000 USD per year per patient, negatively impacting on both patient choice and the healthcare system\(^2\)

- By 2020, a number of diseases will have **new biological treatment options** available across developed markets\(^1\)

- The **constrained payer environment** is triggering a range of initiatives designed to limit growth in healthcare budgets

Payers seek to provide and preserve access to cutting-edge medicines, but also need to ensure the long-term financial sustainability of their healthcare systems\(^3\)

The long-term potential of biological medicines is hampered by their high cost

Psoriasis

- Psoriasis affects approximately 7.4 million Americans\(^1\)
- Access to biological medicines remains a challenge for many American patients due to factors such as limited insurance coverage and prohibitive costs\(^2\)

A number of markets, including Western markets, restrict patient access to biological medicines due to their cost\(^4\)

1. 2015 WHO Global Report: Preventing chronic diseases: a vital investment
Access to biological medicines is not uniform across Europe

- Compared with Western Europe, Central and Eastern Europe have experienced reduced access to biological medicines\(^1,2\)

<table>
<thead>
<tr>
<th>Percentage of patients with rheumatoid arthritis (RA) treated with a biological medicine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Europe*</td>
</tr>
<tr>
<td>11–12%</td>
</tr>
</tbody>
</table>

This difference in access to biological medicines is largely due to general economic conditions\(^2\)

Footnotes: *Based on values from 2009; **Based on values from 2011.

References:
2. 2015 WHO Global Report: Preventing chronic diseases: a vital investment;
A lack of treatment choice has a detrimental impact on patient care\(^1\)

Rheumatoid Arthritis (RA)

- There are around 1.3 million Americans living with RA, many of whom require biological medicines\(^2\)

- It is estimated that the US market for RA treatment will increase from 6.4 billion USD in 2013 to 9.3 billion USD by 2020\(^3\)

- On average, patients with RA can expect to pay in excess of 3,000 USD annually in co-payments for biological medicines\(^4\)

“I use Enbrel. I couldn’t walk without it, and when I lost my healthcare insurance it was $1,800 per box. I sold my car to pay for the Enbrel”\(^5\)

Mika Collins, Michigan
Patient with RA

The availability of biosimilar medicines enhances competition, improves access to biological medicines, and contributes to the financial sustainability of healthcare systems\(^5\)

Biological medicines — the major social and economic challenges

Population ageing and the rising prevalence of chronic conditions is increasing the pressure on health systems. Payers seek to provide and preserve access to cutting-edge medicines, but also need to ensure the long-term financial sustainability of their healthcare system.

Global spend	Global spend on pharmaceutical products continues to increase, and is expected to reach 1.4 trillion USD in the near future.
Access	Access to biological medicines is not uniform, and is often restricted by their high cost.
Biological medicines represent an important but expensive proportion of new drugs	Biological medicines represent an important but expensive proportion of new drugs.

The availability of biosimilar medicines enhances competition, improves access to biological medicines, and contributes to the financial sustainability of healthcare systems.

Biosimilar medicines — rising to the cost challenge

Addressing the rising cost of biological medicines has become a priority for governments and healthcare systems around the globe.

Biosimilar medicines are providing more cost-effective biological treatments, but what are biosimilar medicines, and how do they meet this challenge?
In the absence of competition, biological medicines place a huge financial burden on global healthcare systems

- By introducing competition, the savings generated could be used to treat patients in need in Europe and the USA, who are currently denied access to biological medicines

The addressable* biosimilar medicines market in the US and the five largest European markets, 2016–2020:

US biosimilar savings totalled **2,2 billion USD** in 2019 and **4,5 billion** over the past 10 years***

Potential combined savings of France, Germany, Italy, Spain and the UK: **50 billion USD**

Availability of biosimilar medicines offers an economic benefit to healthcare systems, thereby in part addressing the issue of new, innovative, high-priced medicines

Footnotes: *Addressable market is calculated based on projected growth of originator market without biosimilar entry. Growth rate is based on historical growth and analogue analysis.

**Conversion rate: Conversion rate: 1 EUR = 1.091 USD.

In many developed markets, eight prominent biological medicines came off patent between 2015 and 2020.

- US and European* sales of key biological medicines have lost patent protection between 2015 and 2020.¹

The large number of biological medicines coming off patent presents a significant opportunity for the introduction of biosimilar medicines.

Footnotes: *Values from five largest European markets. Conversion rate: 1 EUR = 1.091 USD.
Abbreviations: LOE, loss of exclusivity.
Europe was the first region in the world to develop a framework for biosimilar medicines

- A biosimilar medicine is a biological medicine that is developed to be highly similar to an existing biological medicine (the ‘reference product’)
- Biosimilar medicines can be marketed once all regulatory exclusivity and intellectual property right periods for the reference product have expired
- In 2004 and 2005, Europe was the first region in the world to develop a legal, regulatory, and scientific framework for approving biosimilar medicines
- Within 10 years, the EU framework moved from a science-driven, conceptual approach to a science-driven, knowledge-based approach
- Since 2006, EU-approved biosimilar medicines have already generated more than 2 billion cumulated patient treatment days of safe clinical experience

Scientific, regulatory, and legal frameworks have now been established around the world (1)

<table>
<thead>
<tr>
<th>Country</th>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>First legal framework for approving biosimilar medicines – directive 2001/83/EU¹</td>
<td>2004</td>
</tr>
<tr>
<td>Japan</td>
<td>Guideline for the quality, safety and efficacy assurance of follow-on biologics²</td>
<td>2009</td>
</tr>
<tr>
<td>WHO</td>
<td>Guidelines on evaluation of SBPs⁴</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>Legislative basis for regulating biosimilar medicines established⁵</td>
<td>2009</td>
</tr>
<tr>
<td>USA</td>
<td>BPICA signed as part of the Affordable Care Act⁶</td>
<td>2009</td>
</tr>
<tr>
<td>Japan</td>
<td>Q&A regarding guidelines⁷</td>
<td>2010</td>
</tr>
</tbody>
</table>

Abbreviations: BPICA, Biologics Price Competition and Innovation Act; EMA, European Medicines Agency; MHLW, Ministry of Health, Labour and Welfare; SBP, similar biotherapeutic products; WHO, World Health Organisation.

Scientific, regulatory, and legal frameworks have now been established around the world (2)

Abbreviations: ANVISA, The Brazilian Health Regulatory Agency; EMA, European Medicines Agency; FDA, Food and Drug Administration; HC, Health Canada; JGA, Japan Generic Medicines Association; MFDS, Ministry of Food and Drug Safety; MCCZA, Medicines Control Council of South Africa; TGA, Therapeutic Goods Administration.

References:
7. MCCZA. Biosimilar medicines quality, non-clinical and clinical requirements;

Biosimilar medicines offer more cost-effective alternative options and thereby enhance competition in the marketplace
Scientific, regulatory, and legal frameworks have now been established around the world (3)

Biosimilar medicines offer more cost-effective alternative options and thereby enhance competition in the marketplace

Revision of Health Canada Guidance for Sponsors
Building on the experience and success of over 300 biosimilar medicines approvals, covering over 10 therapeutic areas

A. Canada
B. USA
C. Brazil
D. Argentina
E. Europe
F. Jordan
G. South Africa
H. Japan
I. South Korea
J. Malaysia
K. Taiwan
L. Australia

Approvals in jurisdictions of IGBA membership

Source: IGBA membership, 20 October 2020
Savings produced by biosimilar medicines contribute to the sustainability of healthcare systems

- Biosimilar medicines could produce cumulative savings of nearly 107 billion USD in Europe and the US combined, between 2015 and 2020*1

Potential cumulative savings from eight key biosimilar medicines in France, Germany, Italy, Spain, the UK, and the US1

Biosimilar medicines have already delivered savings of around 1.6 billion USD in the five largest European markets alone2

Footnotes: *Savings potential in five largest European markets plus US biosimilar accessible market dependent on change in price per treatment day. The accessible market analysis is based on adalimumab, insulin glargine, etanercept, infliximab, rituximab, peg-filgrastim, trastuzumab, and follitropin alpha. Savings potential in biosimilar accessible market at different price levels is calculated based on extrapolated size of the originator market between 2016 and 2020, and historic CAGR and analogues. Accumulation of savings potential between 2016–2020 is shown. Conversion rate: 1 EUR = 1.091 USD.

Globally, biosimilar medicines have the potential to offer healthcare systems huge savings for the same outcomes.

Canada - $94 million CAD
Combined savings from use of etanercept, filgrastim, infliximab and insulin glargine biosimilars in 2018⁵

Europe - 15 billion EUR
between 2016 and 2020 based on a 30% price reduction across eight key reference products, driven by biosimilar competition¹

Japan – 46 billion JPY
between 2017 and 2019 with CAGR 61%²

U.S.A - 2,2 billion USD (2019)
Biosimilar savings totalled 2,2 billion USD in 2019 and 4,5 billion over the past 10 years⁴

South Africa – 6.4 million USD
(84.5 million Rand) per annum
A 50% price reduction following the introduction of the biosimilar trastuzumab would translate into 670 more patients being treated (2016)³

Biosimilar medicines represent a cost-effective alternative to the reference products.

Summary: Biosimilar medicines — rising to the cost challenge

In the absence of competition, biological medicines place a **huge financial burden** on global healthcare systems\(^1\)

In many developed markets, key biological medicines are **coming off patent**\(^1\)

Patent expiry presents a **significant opportunity** for the introduction of biosimilar medicines\(^1\)

Around the globe, biosimilar medicines are being introduced, **enhancing competition** in the marketplace\(^1\)

In the five largest European markets alone, biosimilar medicines have saved **1.6 billion USD**\(^2\)

The **potential savings** offered by biosimilar medicines could help support the **long-term sustainability** of healthcare systems\(^1\)

References:
Chapter 4

Biosimilar medicines — a commitment to scientific excellence

With biosimilar medicines, patients and healthcare providers benefit from high quality and efficacious therapeutic alternatives.

But how are biosimilar medicines developed, and how is their efficacy and safety ensured?
Biological medicines display an inherent degree of minor variability (microheterogeneity), which is tightly controlled\(^1\)

Biological medicines are made in living organisms and purified through complex manufacturing processes\(^2\)

Biological medicines consist of relatively large and often highly complex molecular entities\(^3\)

Any biological medicine will display microheterogeneity, even between different batches of the same product. This normal feature is tightly controlled\(^3\)

The heterogeneity of biological medicines not only reflects the natural variation of these molecules, but also the variability of the production process\(^1,3\)

Throughout their lifecycle, biological medicines undergo changes to their manufacturing process1,2

Changes in the manufacturing process of a biological medicine are very common and can include:3

- Upscaling the process
- Yield improvement
- New purification methods
- Change of cell line
- Change of manufacturing site

Following any change, comparability testing must be performed to ensure that the safety and efficacy is maintained across the different versions of the same biological medicine4

The acceptable variability of the reference biological medicine over its lifecycle designates the goalposts for biosimilar product development5,6

Changes to manufacturing of biological medicines are approved following a stepwise comparability exercise

Comparability bridging studies and adherence to specific pharmacovigilance regulations may be required, depending on the nature of the changes made to the manufacturing process.

- Originator manufacturers rely almost exclusively on analytics and extrapolation of indications to obtain approval for the process changes.

- Regulators have over two decades of experience in evaluating and approving these changes, based on comparability exercises in line with internationally agreed standards.

- When comparability has been demonstrated, the new version of the product can be introduced to the market without informing prescribers, pharmacists, or patients.

The scientific principles for establishing biosimilarity are the same as those for demonstrating comparability after a change in the manufacturing process of an already licensed biological medicine.

References:
Biosimilar medicine development is target-orientated, comparative, and follows a stepwise approach1–3

1. Define and characterize the reference product.

2. Complete manufacturing process development of the biosimilar medicine.

3. Confirm comparability between the biosimilar medicine and the reference product.

The sensitivity of \textit{in vitro} characterization continues to improve, and has increased 10 million-fold between 1990 and 2011 for some methods4.

Biosimilar medicine process development is a reiterative procedure whereby the product quality is continuously reviewed1,2.

The quality, non-clinical, pharmacokinetics (PK)/pharmacodynamics (PD), and clinical profiles of the biosimilar are sequentially compared with the reference product1,2.

The range of variability allowed for a biosimilar medicine is the same as that allowed between batches of the reference medicine1–3.

Example of variability between a biosimilar and the reference medicine

- Variability (yellow shadow) between a biosimilar and the reference medicine is comparable to what may occur between different batches of the same biological medicine.

- Minor variability, e.g. in glycosylation (represented by small blue triangles) may be allowed, while the protein’s amino acid sequence (circles) and biological activity are the same.
Quality comparability establishes highly similar physiochemical properties and biological activity1,2

- Analytical and functional comparability studies are the foundation of biosimilar medicine development1,2
- Analytical testing is a more sensitive means of detecting differences than randomized clinical trials1,2
- The biosimilar medicine and the reference product must be highly similar at a molecular level1,3
 - The primary structures (amino acid sequences) must be identical
 - Higher-level structures must be indistinguishable
- Impurities, biological activity, and post-translational modifications are also compared1,2
- The degree of quality similarity will determine the scope and the breadth of the required non-clinical and clinical data to rule out differences in clinical performance1,2

Non-clinical comparability establishes that functionally, the biosimilar medicine and the reference product are similar1,2

- The biosimilar medicine must display highly similar functionality to the reference biological medicine.
- Multiple *in vitro* (and in exceptional cases, *in vivo*) assays are used to measure the binding of the biosimilar medicine to target antigens or receptors.

PK/PD comparability establishes that the biodistribution of the biosimilar and the reference product are similar

- Comparative pharmacokinetic (PK) and/or pharmacodynamic (PD) studies in humans are designed to further support comparability data, or to detect potential differences between the biosimilar medicine and the reference product\(^1\)
- The PK study is a major gatekeeper in the clinical biosimilarity exercise
- In certain cases, the comparative analytical, non-clinical, and human PK/PD (clinical immunogenicity) studies may be sufficient to definitively confirm biosimilarity to the reference product\(^1,2\)

Clinical comparability complements and confirms the comparability demonstrated at the previous steps

- Tailored clinical comparability [where appropriate] **confirms** that the structural concordance **translates into clinical performance**, and is designed to rule out clinically relevant differences in safety or efficacy\(^1\)

- Comparative clinical trials, where needed, are performed in a scientifically justified ‘clinical model’ that is sensitive to small differences\(^2-6\)

- Clinical safety (including immunogenicity) is important throughout the clinical development program. Safety data is captured during the initial pharmacokinetic (PK) and/or pharmacodynamic (PD) studies, and the comparative clinical study, where required\(^2-6\)

The biosimilar medicine is only approved if there are no clinically meaningful differences from the reference product

References:
How can we tailor biosimilar development?

- Continuously apply evolving regulatory sciences;
- Maintain robust regulatory standards that have resulted in an impeccable track record of biosimilar medicines;
- Adapting the biosimilar framework with the latest knowledge is reflected in objectives of EMA\(^1\), MHRA\(^2\), WHO\(^3\)

 • e.g. EMA objective: “Further develop the biosimilar framework, adapting the clinical part of the development to the latest scientific knowledge concerning the comparability assessment”\(^1\).

 • MHRA Objective: “Develop and publish guidance on a new innovative UK licensing procedure for biosimilar products to operate from 1 January 2021 to reduce the burden on clinical trial data generation”\(^2\).

3. WHO - Main outcomes of the meeting of the WHO Expert Committee on Biological Standardization held from 21 to 25 October 2019, accessed 21 April 2020; see also Backup-slide “WHO Discussion”
Evolution of biosimilar development options for therapeutic proteins

5 step approach
1. Physicochemical analysis
2. Functional analysis
3. Non-clinical (in-vivo)
4. Clinical PK/PD
5. Comparative clinical efficacy

4 step approach
1. Physicochemical analysis
2. Functional analysis
3. Clinical PK
4. Comparative clinical efficacy or, instead clinical PD with sufficiently qualified PD marker

3 step approach
1. Physicochemical analysis
2. Functional analysis
3. Clinical PK (Additional confirmation of immunogenicity/safety only if needed)

No PD as early measure of physiological response required for clinical efficacy
An Efficient Development Paradigm for Biosimilars

Christopher J. Webster, Amy C. Weng & Gillian R. Woodford

BioDrugs 33, 603–611(2019) | Cite this article
3111 Accesses | 4 Altmetric | Metrics

Abstract

The current development paradigm for biosimilars required by regulators in highly regulated jurisdictions is derived from the development of novel drugs and is unnecessarily burdensome and inefficient. It requires the accumulation of data from analytical, nonclinical (including in vivo studies in some jurisdictions), and clinical studies (including powered efficacy studies in most cases); this paradigm is known as 'totality of evidence' (ToE) and does not admit a conclusion of biosimilarity from analytical data alone. The record of biosimilar approvals in these jurisdictions shows no biosimilar candidate that has been found highly similar to its reference in analytical and pharmacokinetic studies has failed to be approved. We propose a new paradigm ('confirmation of sufficient likeness', CSL) that emphasizes the demonstration of analytical resemblance between the biosimilar candidate and its reference, and permits the conclusion of biosimilarity upon this basis. CSL does not entail bridging studies between reference products, in vivo nonclinical studies, or powered efficacy studies and is, therefore, substantially more efficient than ToE while maintaining equivalent scientific rigor. Such efficiency will contribute to the attractiveness as well as the sustainability of biosimilars as a therapeutic modality.

The Path Towards a Tailored Clinical Biosimilar Development

Mark S. Lester 1,2,3, Geoffrey B. Sarnicki, Beth Watson, Rachel H. S. Karsten, Beth Whelan, Michael Terry, Peter Goo & Luke MacDonald

BioDrugs 34, 297–306(2020) | Cite this article
3245 Accesses | 3 Altmetric | Metrics

Abstract

Since the first approval of a biosimilar medicinal product in 2006, scientific understanding of the features and development of biosimilar medicines has accumulated. This review scrutinizes public information on development programs and the contribution of the clinical studies for biosimilar approval in the European Union (EU) and, or, the United States (US) until November 2009. The retrospective evaluation of the programs that eventually obtained marketing authorization and/or licenses revealed that in 95% (36 out of 38) of all programs, the comparative clinical efficacy studies confirmed similarity. The remaining 5% (2 out of 38), despite meeting efficacy outcomes, the biosimilar candidates exhibited clinical differences in immunogenicity that required changes to the manufacturing process and additional clinical studies to enable biosimilar approval. Both instances of clinical differences in immunogenicity occurred prior to 2010, and the occurrence of these cases is unlikely today due to state-of-the-art assays and improved control of process-related impurities. Biosimilar candidates that were neither approved in the EU nor in the US were not approved due to reasons other than clinical confirmation of efficacy. This review of the development history of biosimilars allows the proposal of a more efficient and expedited biosimilar development without the routine need for comparative clinical efficacy and/or pharmacodynamic studies and without any compromise in quality, safety, or efficacy. This proposal is scientifically valid, consistent with regulation of all biologics, and maintains robust regulatory standards in the assessment of biosimilar candidates. Note: The findings and conclusion of this paper are limited to biosimilar products developed against the regulatory standards in the EU and the US.
Approval of all indications of biosimilar medicines is based on the totality of evidence

- A biosimilar may be approved for one or more indications for which its reference product is licensed, but for which there was no head-to-head clinical comparison
- These indications are individually evaluated based on sound science
- The approvals are based on extrapolation of data, which is an established regulatory and scientific principle. This approach is also used by regulators in the approval of changes to the reference product manufacturing process, and in pharmaceutical development of all biological medicines

While no one piece of information is sufficient to demonstrate biosimilarity, when taken together, the evidence forms a comprehensive picture in each and every approved condition

Extrapolation of indications is based on the clinical experience with the reference product and the entire similarity exercise1.

Abbreviations: PK, pharmacokinetic; PD, pharmacodynamic

Figure adapted from Windisch J.
Biosimilar medicine development requires significant investment and state-of-the-art technologies

- **Significant investment**, costing 100–300 million USD and taking up to eight years to develop, is needed to achieve a successful similarity exercise \(^1\)

- **Highly sophisticated analytical tools** allow for a detailed characterization of the biosimilar medicine and the reference product\(^3,4\)

- Due to technological advances, biosimilar medicines are usually **better characterized** than their reference products, which were characterized at the time of their initial approval 10 or 20 years earlier\(^5,6\)

- Biosimilar medicines are manufactured, distributed, and monitored according to the **same standards as other medicines**, and regulatory authorities perform periodic inspections of the manufacturing sites\(^2\)

Patients and healthcare providers can trust biosimilar medicines, as they are approved according to the same high standards and by the same regulators as all other medicines

Summary: Biosimilar medicines—a commitment to scientific excellence

Biological medicines display an inherent degree of minor variability, which is tightly controlled\(^1\)

Throughout their lifecycle, biological medicines undergo manufacturing changes\(^2\)

Tailored clinical comparability, [where appropriate] complements and confirms the comparability demonstrated at the previous steps\(^3\)

Scientific principles for establishing biosimilarity are the same as those for demonstrating comparability\(^4\)

Stepwise comparability exercises ensure there are no clinically meaningful differences between the biosimilar and the reference product\(^5,6\)

Development of biosimilars requires significant investment and state-of-the-art technologies\(^4\)

WHO, EMA/EU, FDA/USA, HC/Canada, PMDA/Japan, TGA/Australia and others, all require extensive evidence that a biosimilar is highly similar to a reference product, and that there are no meaningful differences\(^7\)

The benefits of biosimilar medicines

Biosimilar medicines have demonstrated similarity with reference biologicals in terms of structure, function, safety and efficacy, but what are their benefits?
Europe is a pioneer of biosimilar medicines and has the largest clinical experience

Since 2006, EU-approved biosimilar medicines have generated more than 400 million patient days of clinical experience worldwide.\(^1\)

Between 2006 and 2013, patient access rose by 44% following the launch of filgrastim.\(^1\)

The first worldwide biosimilar medicine (somatropin) was approved in the EU in 2006.\(^2\)

The first biosimilar monoclonal antibody (infliximab) was approved in the EU in 2013.\(^2\)

EU approved biosimilar medicines are available in over 60 countries around the world.\(^1\)

European uptake accounts for 87% of the global biosimilar medicines market.\(^3\)

There is nearly 15 years’ worth of real-world evidence demonstrating the benefits that biosimilar medicines offer to patients and healthcare systems.\(^1\)

Biosimilar medicines offer benefits to patients, healthcare professionals, and payers \(^1\)

Patients\(^{1,2}\)
- More patients gain access to biologic treatments, and at earlier stages of the therapy cycle
- Improved access drives better outcomes for patients

Healthcare professionals\(^{1,2}\)
- Access to a wider spectrum of treatment options
- Development of value-added services for patients via benefit-sharing models
- Reduced pressure on the prescribers’ budget

Payers\(^{1,3}\)
- Creation of a more competitive market with a broader range of cost-effective treatment options
- Generation of savings across healthcare systems, supporting their sustainability

Biosimilar medicines increase the treatment options available to patients, healthcare professionals, and payers \(^1\)

Availability of biosimilar medicines increases patient access to biologic therapies

- According to WHO, biosimilar medicines provide a good opportunity to **expand access** and to become a **game-changer** for access to medicines for certain complex conditions¹.

- In countries with low initial usage or availability of biological products, the launch of biosimilar medicines appears to **lead to increased access**².

<table>
<thead>
<tr>
<th>Product/Country</th>
<th>Treatment days per capita (Year before biosimilar entrance)</th>
<th>Volume change of treatment days following introduction of biosimilar</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>0.02</td>
<td>152%</td>
</tr>
<tr>
<td>Czech Rep</td>
<td>0.08</td>
<td>68%</td>
</tr>
<tr>
<td>Poland</td>
<td>0.04</td>
<td>82%</td>
</tr>
<tr>
<td>G-CSF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>0.02</td>
<td>2542%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.02</td>
<td>581%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.05</td>
<td>509%</td>
</tr>
<tr>
<td>Anti-TNF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.10</td>
<td>190%</td>
</tr>
<tr>
<td>Czech Rep</td>
<td>0.24</td>
<td>59%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.49</td>
<td>93%</td>
</tr>
</tbody>
</table>

Abbreviations: G-CSF, granulocyte-colony stimulating factor; HGH, human growth hormone; TNF, tissue necrosis factor; WHO, World Health Organisation.

Swedish launch of biosimilar filgrastim led to improved patient access

Initiation of treatment with filgrastim reference medicine required the formal approval of three physicians

Launch of filgrastim biosimilar

Following the launch of biosimilar filgrastim:

- Treatment costs for granulocyte colony-stimulating factor (G-CSF) treatment of febrile neutropenia were reduced
- Regional authorities relaxed restrictions on the prescribing of G-CSF treatments
- Prescriptions do not need additional authorization

Driven by the use of biosimilar filgrastim, clinical use of G-CSF increased five fold in the Southern Healthcare region

Biosimilar medicines allow access for more patients, and at earlier stages in the treatment cycle

In Bavaria1, biosimilar competition led to rheumatic patients receive faster access to biological therapy2

*until 2015, exclusively synthetic standardised therapy or original biological agents were available3
Biosimilar medicines make biotherapeutics a cost-effective option, broadening treatment choice

- Biosimilar medicines are often able to reach an acceptable incremental cost-effectiveness ratio (ICER) in situations where reference products are not\(^1\)
- In the UK, biosimilar medicines have introduced new treatment options for ankylosing spondylitis, and for treatment-induced anaemia in patients with cancer\(^1,2\)

<table>
<thead>
<tr>
<th>Ankylosing spondylitis</th>
<th>According to 2008 UK National Institute for Health and Clinical Excellence (NICE) guidelines, infliximab (originator) should not be used at all</th>
<th>2015 NICE guidance recommends use of infliximab biosimilar medicines in adults with non-radiographic axial spondyloarthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer-treatment-induced anemia</td>
<td>According to 2008 NICE guidelines, epoetin is clinically effective for cancer treatment-induced anaemia, but is not cost-effective</td>
<td>According to 2014 NICE guidelines, epoetin is both clinically effective and cost-effective</td>
</tr>
</tbody>
</table>

Biosimilar medicines empower physicians, providing cost-effective treatment options\(^1\)

Abbreviations: NICE, The National Institute for Health and Care Excellence.

Globally, biosimilar medicines have the potential to offer healthcare systems huge savings for the same outcomes.

Canada - $94 million CAD
Combined savings from use of etanercept, filgrastim, infliximab and insulin glargine biosimilars in 2018³

U.S.A - 2,2 billion USD (2019)
Biosimilar savings totalled 2,2 billion USD in 2019 and 4,5 billion over the past 10 years⁴

Europe – 15 billion EUR
between 2016 and 2020
based on a 30% price reduction across eight key reference products, driven by biosimilar competition¹

Japan – 46 billion JPY
between 2017 and 2019 with CAGR 61%²

South Africa – 6.4 million USD
(84.5 million Rand) per annum

A 50% price reduction following the introduction of the biosimilar trastuzumab would translate into 670 more patients being treated (2016)³

Biosimilar medicines represent a cost-effective alternative to the reference products

Sharing the benefits of clinical use of biosimilar medicines

- In Germany, the medical association KV Westfalen-Lippe, and the statutory health insurance provider Barmer GEK, agreed a contract geared towards improving care of patients with inflammatory bowel disease
- Under the contract, patients with ulcerative colitis or Crohn’s disease will be primarily treated with infliximab biosimilars
- Absolute savings generated from prescribing infliximab biosimilar will be equally split between the treating physician and Barmer GEK

Summary: The benefits of biosimilar medicines

The use of biosimilar medicines has been successfully implemented within Europe for over a decade.1

Biosimilar medicines improve the treatment options available to:2–4

- **Patients**: Biosimilar medicines allow access for more patients, and at earlier stages in the treatment cycle.
- **Healthcare professionals**: Biosimilar medicines empower physicians, providing cost-effective treatment options.
- **Payers**: Globally, biosimilar medicines introduce competition by representing a cost-effective alternative to reference biologicals, and generate savings.

Benefit sharing models involve all stakeholders and help to demonstrate the cost benefits associated with biosimilar medicine adoption.3

Biosimilar medicine policies are necessary to drive uptake and provide the benefits of biosimilar use.
Building on the experience and success of biosimilar medicines

Biosimilar medicines are increasingly becoming an integral part of modern healthcare systems, so what does the future hold?
Biosimilar medicines are internationally recognized for expanding access to life-changing treatments

“Globally, regulators have confidence in the rigour of the scientific review and approval process for biosimilars.”

International Coalition of Medicines Regulatory Authorities (ICMRA) Statement about confidence in biosimilar products

“Biosimilars can provide more treatment options for patients, and possibly lower treatment costs, enabling greater access for more patients.”

Dr Janet Woodcock, Director, Centre for Drug Evaluation and Research, Food and Drug Administration (FDA)

“Whether it's in the public or the private sector, we need to provide sustainable healthcare and biosimilars are clearly a good way to improve affordability.”

Professor Josep Tabernero, Former President, European Society of Medical Oncology (ESMO)

Health Ministers recognize the value and benefits of biosimilar medicines use for healthcare.

The Honourable Greg Hunt
Health Minister
Australia

7 of the top 10 most expensive medicines on the PBS are all from the bio family. That's why what's occurring with biosimilars is so important, because it helps to expand the sustainability of the health system & helps to bring down the cost of these medicines.

October 2, 2019, NSW Parliament House

The Honourable Adrian Dix
Minister of Health
Province of British Columbia (B.C.), Canada

Biosimilars are a necessary step to ensure PharmaCare provides existing coverage for more people and funds new drugs well into the future.
Globally, there is a huge opportunity for biosimilar medicines to provide competition to existing biological medicines.

Percentage of global biological medicine sales by region

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>59%</td>
</tr>
<tr>
<td>Europe</td>
<td>22%</td>
</tr>
<tr>
<td>Japan</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>13%</td>
</tr>
</tbody>
</table>

Percentage of global biosimilar medicine sales by region

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>2%</td>
</tr>
<tr>
<td>Europe</td>
<td>87%</td>
</tr>
<tr>
<td>Japan</td>
<td>7%</td>
</tr>
<tr>
<td>Other</td>
<td>4%</td>
</tr>
</tbody>
</table>

Experience of biosimilar medicines in Europe is expected to support faster uptake in other regions.

Building on the experience and success of over 300 biosimilar medicines approvals, covering over 10 therapeutic areas

Source: IGBA membership, 20 October 2020
Switching biological medicines is considered safe¹

- **Europe is leading the way** in switching from the reference to a corresponding biosimilar medicine²
- European Public Assessment Reports (EPARs), available on the EMA website, provide **substantial evidence** for the safety of a switch²
- In Japan, a switching study from reference product filgrastim to the biosimilar demonstrated the same clinical efficacy and safety, but at a **reduced cost**³
- **Large clinical experience** in Europe supports switching not only between new versions of the same product, but also between a reference and its biosimilar medicine²
- The lack of safety signals in Europe **provides further reassurance** of the safety of switching between the reference and the biosimilar medicine²
- The available switching data (over 170 studies) do not indicate that switching from a Reference Product to a Biosimilar is associated with any major efficacy, safety or immunogenicity issues⁴
- A prescribing healthcare professional **transferring** a patient on treatment from an originator to a biosimilar medicine is an **accepted clinical practice in many countries**⁵

Under the supervision of the treating physician, patients can be safely switched from the reference product to the biosimilar medicine and vice versa³

Widespread support for switching biosimilar medicines under supervision of a healthcare person

Source: Medicines for Europe Internal Biosimilar Mapping

* Medicines for Europe Overview of biosimilar physician-led switching (EU) updated Sept 2020
Switching studies confirm no differences in safety, efficacy or immunogenicity (2018)

Scientific literature (1993-2017) on switching

<table>
<thead>
<tr>
<th>Single or multiple switch</th>
<th>Reference → Biosimilar</th>
<th>90 studies</th>
<th>7 molecules</th>
<th>14 indications</th>
<th>14,225 individuals</th>
</tr>
</thead>
</table>

Unchanged risk of immunogenicity-related safety concerns or diminished efficacy after switching

Huge majority of **single switch** studies did **not report differences in safety, efficacy or immunogenicity** compared to patients not switched.

Small number (three) of **multiple switch** studies published, but likewise **no differences detected**.

Source: H. P. Cohen – *Switching Reference Medicines to Biosimilars: A Systematic Literature Review of Clinical Outcomes*
No major efficacy, safety, or immunogenicity issues when switching from a reference product to a biosimilar (2020)

A Systematic Review on Switching (178 studies)

Reference to Biosimilar Product

| Randomized controlled trials | Real-world evidence |

“Despite the limitations.......the available switching data do not indicate that switching from a reference product to a biosimilar is associated with any major efficacy, safety, or immunogenicity issues.”

Overview of biosimilar physician-led switching (EU), updated in Sept. 2020

A number of medical societies have revised their initial positions and recommendations on the use of biosimilar medicines, recognising the positive clinical experience and benefits for patients.

Transitioning approach to biosimilars medicines in two Canadian Provinces

- British Columbia¹ and Alberta²—have implemented **well-controlled switching policies** for patients on their public drug programs taking etanercept, infliximab, insulin glargine and rituximab for chronic conditions, saving hundreds of millions of dollars that has been reinvested into their healthcare systems.

¹ B.C Gov News: B.C. expands biosimilar program; ² Alberta: Biosimilar drugs.
The total clinical experience with biosimilar medicines exceeded 2 billion patient treatment days in Europe.

Over the last 10 years, the cumulative patient treatment days for EU approved biosimilar medicines have doubled every ~1.5 years.

Reference: Source: MIDAS MAT Q2 2020 data; rituximab and trastuzumab DDDs calculated via IQVIA Real World Data, Oncology Dynamics physician surveys on average cycles; pre-2009 analysis includes extrapolated treatment days for biosimilars launched between 2005 – 2008; country cohort includes 30 countries within Europe Economic Area.
Increasing experience with biosimilar medicines supports faster uptake of subsequent new biosimilar medicines

- Infliximab was the first biosimilar monoclonal antibody (mAb) to be launched in Europe
- Uptake of a subsequent complex biosimilar, etanercept, was generally similar or improved compared with that of infliximab

Comparison of post-launch market share of biosimilar infliximab with that of etanercept for the same time period

The launch and uptake of multiple biosimilar medicines provides a competitive biologics marketplace

*Denmark data from MIDAS monthly restricted database
In Europe, biosimilars have captured 7% more of the biologics market\(^1\) over a 5-year period

2015
- Biosimilar medicines represented less than 2% of the total biologic medicines market

2020
- Biosimilar medicines represent nearly 10% of the total biologic medicines market

In the last 5-year period, biosimilar market growth in the EU mainly relates to immunology and oncology biosimilar market growth.

Source: 1. IQVIA MIDAS MAT Q2 2020; Country cohort includes 30 countries within Europe Economic Area - Biologics market by value
The growing number of available biologic therapies offers future opportunities for biosimilar medicines development.

Over the next 10 to 15 years, more than 30 biologic medicines (mainly monoclonal antibodies) will lose market protection and open to biosimilar competition in existing and new therapy areas, including for orphan indications.

References:
1. Biosimilar medicines group (Medicines for Europe) non-exhaustive compilation based on publicly available information (Oct 2020)
Availability of biosimilar medicines improves the security of the supply chain

▪ The FDA and EMA have identified manufacturing problems, delays in supply, and lack of available active ingredients as the most frequent causes of drug shortages

▪ Drug shortages can compromise patient safety and clinical outcomes, and increased healthcare costs, due to delays or changes in treatment regimens

▪ Biosimilar medicines help prevent future biologic shortages and ensure access to effective and safe treatment options

“[…] the biosimilar market will see a more diverse range of companies, greater competition, and improved supply chain security.”

Alex Kudrin, Biopharmaceutical Consultant, United Kingdom

Summary: Building on the experience and success of biosimilar medicines

The benefits offered by biosimilar medicines are internationally recognized\(^1\)

Around the world, multiple biosimilar medicines have been approved\(^2-6\)

Switching from a reference product to a biosimilar medicine is considered safe\(^7\)

Experience with biosimilar medicines improves uptake\(^8\)

A strong pipeline supports the continuous introduction of new biosimilar medicines\(^1\)

Availability of biosimilar medicines safeguards the supply chain, ensuring patient access to key therapeutics